
COP 3223: C Programming (Pointers – Part 2) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Pointers In C – Part 2

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Pointers – Part 2) Page 2 © Dr. Mark J. Llewellyn

Functions That Return Pointers

• Recall that when passing a pointer to a function, the passing

mechanism is known as pass by reference. When passing a

scalar value to a function the passing mechanism is known as

pass by value.

• Since the function receives a copy of the caller’s value of the

parameter in pass by value, it is not possible for the function to

modify the value of the caller’s variable. This is because the

function is working with its own local copy of the caller’s

variable’s value and has no access to the caller’s variable.

• In pass by reference, a pointer to the caller’s variable is passed

to the function which provides the function access to the

variable through the same location as it is accessed by the

caller. Thus, modification by the function modifies the same

variable as is accessed by the caller.

COP 3223: C Programming (Pointers – Part 2) Page 3 © Dr. Mark J. Llewellyn

Functions That Return Pointers

• It is also possible for a function in C to return a pointer
value as the return type of the function.

• This is a very common technique utilized with
functions that deal with arrays, where the function will
return a pointer to a specific location (index) in the
array.

• Let’s look at a fairly simple function first (before
adding the complexity of arrays to the mix), that
simply returns a pointer to the larger of two integer
values sent to it.

COP 3223: C Programming (Pointers – Part 2) Page 4 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Pointers – Part 2) Page 5 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Pointers – Part 2) Page 6 © Dr. Mark J. Llewellyn

Functions That Return Pointers

• Now let’s look at a function that returns a pointer which is

addressing a location in an array of integer values.

• We’ll keep this first function fairly simple in that all it will do is

return a pointer to the middle element of an array. For

example, if the array has 10 elements, our function will return a

pointer to the element with an index of 5. (If the array had 11

elements we’d also expect the middle index to be 5 since we’ll

use integer division to find the middle location.)

COP 3223: C Programming (Pointers – Part 2) Page 7 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Pointers – Part 2) Page 8 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Pointers – Part 2) Page 9 © Dr. Mark J. Llewellyn

Pointer Arithmetic In C

• As the previous example illustrates, pointers can
be used to point to any element of an array.
While C uses an implicit pointer to reference the
first element of every array, so to can any
element be referenced with a pointer.

• In fact, it is very common to perform many array
operations using only pointers and pointer
arithmetic.

• Pointer arithmetic is used to modify the value of
a pointer and allowing us to “walk around” in the
array using the pointer value.

COP 3223: C Programming (Pointers – Part 2) Page 10 © Dr. Mark J. Llewellyn

Pointer Arithmetic In C

• C supports three forms of pointer arithmetic
(also referred to as address arithmetic).

• The three forms of pointer arithmetic are:

– Adding an integer value to a pointer.

– Subtracting an integer value from a pointer.

– Subtracting one pointer value from another pointer
value.

• We’ll look at each form of pointer arithmetic and
illustrate their usage as well as potential issues
with each form.

COP 3223: C Programming (Pointers – Part 2) Page 11 © Dr. Mark J. Llewellyn

Pointer Arithmetic – Adding An Integer To A Pointer

• Let’s assume the following declarations have been
made:

int anArray[10], *ptr1, *ptr2, i, j;

• In general, adding an integer x to a pointer p causes the
pointer to reference the array element x places after the
one that p is initially referencing.

• More precisely, using the example declarations shown
above, if ptr1 points to anArray[i], then ptr1+j

references anArray[i+j].

• NOTE: It is a run-time error in the above expression if
the array element [i+j] does not exist (an out of
bounds error)!

COP 3223: C Programming (Pointers – Part 2) Page 12 © Dr. Mark J. Llewellyn

Pointer Arithmetic – Adding An Integer To A Pointer

EXAMPLE

ptr1 = &anArray[2]; 2 4 6 8 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9

ptr1

ptr2 = ptr1 + 3; 2 4 6 8 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9

ptr1 ptr2

COP 3223: C Programming (Pointers – Part 2) Page 13 © Dr. Mark J. Llewellyn

Pointer Arithmetic – Adding An Integer To A Pointer

EXAMPLE – continues from previous page

ptr2 += 3; 2 4 6 8 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9

ptr1 ptr2

2 4 6 8 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9

ptr1 ptr2

int i = -2;

ptr2 += i;

COP 3223: C Programming (Pointers – Part 2) Page 14 © Dr. Mark J. Llewellyn

Pointer Arithmetic – Subtracting An Integer From A Pointer

• Let’s assume the following declarations have been
made:

int anArray[10], *ptr1, *ptr2, i, j;

• In general, subtracting an integer x from a pointer p
causes the pointer to reference the array element x
places before the one that p is initially referencing.

• More precisely, using the example declarations shown
above, if ptr1 points to anArray[i], then ptr1-j

references anArray[i-j].

• NOTE: It is a run-time error in the above expression if
the array element [i-j] does not exist (an out of
bounds error)!

COP 3223: C Programming (Pointers – Part 2) Page 15 © Dr. Mark J. Llewellyn

Pointer Arithmetic – Subtracting An Integer From A

Pointer – EXAMPLE

ptr1 = &anArray[5]; 2 4 6 8 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9

ptr1

ptr2 = ptr1 - 3; 2 4 6 8 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9

ptr2 ptr1

COP 3223: C Programming (Pointers – Part 2) Page 16 © Dr. Mark J. Llewellyn

Pointer Arithmetic – Subtracting An Integer From A

Pointer – EXAMPLE – continues from previous page

ptr1 -= 5; 2 4 6 8 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9

ptr2ptr1

2 4 6 8 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9

ptr2ptr1

int i = -4;

ptr2 -= i;

COP 3223: C Programming (Pointers – Part 2) Page 17 © Dr. Mark J. Llewellyn

Pointer Arithmetic – Subtracting One Pointer From Another

• Let’s assume the following declarations have been made:

int anArray[10], *ptr1, *ptr2, i, j;

• In general, subtracting one pointer from another, the result
is the distance (measured in array elements) between the
pointers.

• Thus, if ptr1 points to element anArray[i] and ptr2
points to anArray[j], then ptr1 – ptr2 is equal to
i-j.

• NOTE: It is a run-time error in the above expression if the
array element [i-j] does not exist (an out of bounds
error)!

• NOTE: Subtracting one pointer from another is undefined
unless both pointers reference the same array!

COP 3223: C Programming (Pointers – Part 2) Page 18 © Dr. Mark J. Llewellyn

Pointer Arithmetic – Subtracting An Integer From A

Pointer – EXAMPLE

ptr1 = &anArray[5];

ptr2 = &anArray[2];

i = ptr2 – ptr1; //i = 3

i = ptr1 – ptr2; //i = -3

2 4 6 8 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9

ptr2 ptr1

2 4 6 8 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9

ptr1ptr2

out of bounds error

ptr1 = &anArray[6];

ptr2 = &anArray[3];

i = ptr2 – ptr1; //i = -3

i = ptr1 – ptr2; //i = 3

COP 3223: C Programming (Pointers – Part 2) Page 19 © Dr. Mark J. Llewellyn

Using Pointers For Array Processing

• Pointer arithmetic is often used for moving about
in an array.

• The following example illustrates how pointer
arithmetic is used to “walk through” the elements
of an array producing the sum of the elements in
the array.

• To keep things fairly simple, we’ll assume a
small array of 10 elements and use an initializer
to place the values in the array. The practice
problem at the end of these notes will have you
modify this example to use an array of user-
determined length to accomplish the same task.

COP 3223: C Programming (Pointers – Part 2) Page 20 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Pointers – Part 2) Page 21 © Dr. Mark J. Llewellyn

Trace of Array Example Using Pointer Arithmetic

In main() at time of

call to sumArray
1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

anArray

Line 13 in sumArray

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

anArray

localPtr

ptrToArray

COP 3223: C Programming (Pointers – Part 2) Page 22 © Dr. Mark J. Llewellyn

Trace of Array Example Using Pointer Arithmetic

Line 16 in sumArray

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

anArray

localPtr

ptrToArray

Line 16 in sumArray

localSum = 1,

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

anArray

localPtr

ptrToArray

localSum = 3,

COP 3223: C Programming (Pointers – Part 2) Page 23 © Dr. Mark J. Llewellyn

Trace of Array Example Using Pointer Arithmetic

Line 16 in sumArray

Loop terminates

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

anArray

localPtr

ptrToArray

. . . Line 15 in sumArray

localSum = 55,

localSum = 55,

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

anArray

localPtr

ptrToArray

COP 3223: C Programming (Pointers – Part 2) Page 24 © Dr. Mark J. Llewellyn

Using Pointers For Array Processing

• As a final example of using pointer arithmetic for
array processing, the example on the next page
prints the elements in an array in the reverse
order in which they are stored.

• Notice that in this case we are subtracting an
integer (1) from the value of a pointer, as well as
using various pointer assignments.

• Once again, I just used an initializer for a fairly
simple array of values, but you might want to
modify the code so that the array values could be
either read in by the user from the keyboard or
even better from a file.

COP 3223: C Programming (Pointers – Part 2) Page 25 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Pointers – Part 2) Page 26 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Pointers – Part 2) Page 27 © Dr. Mark J. Llewellyn

Practice Problems

1. Modify the example on page 20 so that the

program asks the user how many elements will

be in the array and then reads that many values

from the keyboard entered by the user.

2. Write a C program that uses a function that

returns a pointer to the element of an array that

contains the largest value in the array. Have the

function accept an explicit pointer to the first

element of the array that is passed to it.

