Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3223/spr2009/sectionl

School of Electrical Engineering and Computer Science
University of Central Florida

COP 3223: C Programming (Pointers — Part 2 Page 1 © Dr. Mark J. Llewellyn

Functions That Return Pointers

Recall that when passing a pointer to a function, the passing
mechanism Is known as pass by reference. When passing a
scalar value to a function the passing mechanism is known as
pass by value.

Since the function receives a copy of the caller’s value of the
parameter in pass by value, it is not possible for the function to
modify the value of the caller’s variable. This is because the
function i1s working with its own local copy of the caller’s
variable’s value and has no access to the caller’s variable.

In pass by reference, a pointer to the caller’s variable is passed
to the function which provides the function access to the
variable through the same location as it is accessed by the
caller. Thus, modification by the function modifies the same

variable as is accessed by the caller.
#

COP 3223: C Programming (Pointers — Part2) Page2 © Dr. Mark J. Llewellyn g’)n

Functions That Return Pointers

It is also possible for a function in C to return a pointer
value as the return type of the function.

This Is a very common technique utilized with
functions that deal with arrays, where the function will
return a pointer to a specific location (index) in the
array.

Let’s look at a fairly simple function first (before
adding the complexity of arrays to the mix), that
simply returns a pointer to the larger of two integer
values sent to it.

COP 3223: C Programming (Pointers —Part2) Page3 © Dr. Mark J. Llewellyn g’)n

— — |

d function returning a paointer - example 1.c

5
b #include <stdio.h>
?
8 int *max (int *numl, int *numz)
?{
18 if (*numl > *nume)
11 retorn numl; //numl is the larger - return pointer to numl
12 else
13 return num2; //numZ is the larger - return pointer to nums
14 }//end max function
15
16 int maini)
17 ¢
18 int wvaluel, wvalueZ; J us=er =ntered Integer valuss
19 int *ptr:; /2 pointer te the largest valus
28
21 printf ("Please =nter two integer valuss:"):
22 gcanf (":d®xd4d", &valuel, &valueZ);
23 Si/5end addresses of the tweo valuss to max, get back & pointer to the largser
24 ptr = max(&avaluel, &valuesl):
25 printf ("WnYnThe larger of the two wvaluez vou entered is: 4", *ptr):
26
27 //Note the following alsc works fins
28 printf ("wn\nThe larger of the two valuess you entered isz: %4, *max(svaluel,
27
34 printf ("\nh\n") ;
31 gystem("FATTIE") ;
32 retorn 0;

23 }//=nd main function

svalue.

1 Cal

COP 3223: C Programming (Pointers —Part2) Page4 © Dr. Mark J. Llewellyn

o K:\COP 3223 - Spring 2009\COP 3223 Program Files\Point.... JH(=] E3

lease enter two integer values:
5
8

The larger of the two values you entered is: 98
The larger of the two values you entered is: 98

Press any key to continue . . .

(| | 4y

e K:\COP 3223 - Spring 2009\COP 3223 Program Files\Pointers In ... HEH

lease enter two integer values:
123
69

The larger of the two values you entered is: 123
The larger of the two values you entered is: 123

Press any key to continue . . . _ v

N | M 4

COP 3223: C Programming (Pointers —Part2) Page5 © Dr. Mark J. Llewellyn

Functions That Return Pointers

Now let’s look at a function that returns a pointer which is
addressing a location in an array of integer values.

We’ll keep this first function fairly simple in that all it will do is
return a pointer to the middle element of an array. For
example, if the array has 10 elements, our function will return a
pointer to the element with an index of 5. (If the array had 11
elements we’d also expect the middle index to be 5 since we’ll
use integer division to find the middle location.)

”
COP 3223: C Programming (Pointers —Part2) Page6 © Dr. Mark J. Llewellyn g);

funchion returhing a painter - example 2.c

12,

Arptr to middle position in the array

- -

integer division

Max) ;

— - .
8 vVvalilus -—

14, 18,

exampls 2

Mark Ll=ev=llvn

used hers

18, 20%:

myhrray[i]):

%:1'-1' n" .

1 //Pointers In ¢ - Part 2 - function th
2 //The function returns a pointer te th
3 //April 11, 2009 Written by
4
L #include «<stdioc.h>
6 #define MLX 10
?
8 int *midPosition(int anfrrav[], int =size)
?{
18 retorn &anlhArrav([size/21: //note
11 }//end midPosition function
12
13 int main()
14 {
15 int i; //loop counter
16 int myArray[MAX] = {2, 4, &, 2, 10,
17 int *ptrToMiddle;
18
19 for (i = 0; i < MRX; ++i) {
26 printf ("myArray[%d] = d\n", i,
21 Y //end for stmt
22 printf ("\nYn") ;
23 ptrToMiddle = midPosition (myirray,
24 printf {"The wvalue in the middle poszition of the array i=:
25
26 printf ("\n\n") ;
27 system("FATSE™) ;
28 retorn 0;
29 y//end main function
2 |

the middle position of

Ehe array

*ptrloMiddle) ;

COP 3223: C Programming (Pointers — Part 2)

Page 7

© Dr. Mark J. Llewellyn

e KACOP 3223 - Spring 2009\COP 3223 Program Files\Pointers |... HEE

yArray[B] = 2 "
yArrayll] = 4

yArrayl2] = 6

yArray[3] = 8

yArrayl[4] = 18

yArrayl5] = 12

yArraylb] = 14

yArrayl[?]1 = 16

yArray[B8] = 18

yArrayl?] = 28

The value in the middle position of the array is: 12

K | iy

COP 3223: C Programming (Pointers —Part2) Page8 © Dr. Mark J. Llewellyn

Pointer Arithmetic In C

As the previous example illustrates, pointers can
be used to point to any element of an array.
While C uses an implicit pointer to reference the
first element of every array, so to can any
element be referenced with a pointer.

In fact, it Is very common to perform many array
operations using only pointers and pointer
arithmetic.

Pointer arithmetic Is used to modify the value of
a pointer and allowing us to “walk around” In the
array using the pointer value.

’

COP 3223: C Programming (Pointers —Part2) Page9 © Dr. Mark J. Llewellyn g’)n

Pointer Arithmetic In C

« C supports three forms of pointer arithmetic
(also referred to as address arithmetic).

* The three forms of pointer arithmetic are:

— Adding an integer value to a pointer.
— Subtracting an integer value from a pointer.

— Subtracting one pointer value from another pointer
value.

 We’ll look at each form of pointer arithmetic and
Illustrate their usage as well as potential issues
with each form.

’

COP 3223: C Programming (Pointers —Part 2) Page 10 © Dr. Mark J. Llewellyn g’)n

Pointer Arithmetic — Adding An Integer To A Pointer

« Let’s assume the following declarations have been
made:

int anArray[10], *ptrl, *ptr2, 1, 73;

* In general, adding an integer x to a pointer p causes the
pointer to reference the array element x places after the
one that p is initially referencing.

 More precisely, using the example declarations shown
above, If ptrl points to anArray[i], then ptrl+]
references anArray[i+7].

« NOTE: Itis a run-time error in the above expression if
the array element [i+7] does not exist (an out of

bounds error)!

”
COP 3223: C Programming (Pointers —Part 2) Page 11 © Dr. Mark J. Llewellyn g);

Pointer Arithmetic — Adding An Integer To A Pointer
EXAMPLE

0 1 2 3 4 5 6 7 8 9

ptrl = &anArray[2]; 2 4 6 8 10 | 12 | 14 | 16 | 18 | 20

I

ptrl

ptr2 = ptrl + 3; 2 4 6 8 10 | 12 | 14 | 16 | 18 | 20
ptrl o ptr2 !

COP 3223: C Programming (Pointers —Part 2) Page 12 © Dr. Mark J. LIewellyn

Pointer Arithmetic — Adding An Integer To A Pointer
EXAMPLE - continues from previous page

0 1 2 3 4 5 6 7 8 9

ptr2 += 3; 2 4 6 8 10 | 12 | 14 | 16 | 18 | 20

| |

ptrl ptr2

int 1 = -2;

(o))
(00]

ptr2 4= 1i; 2 | 4 10 | 12 | 14 | 16 | 18 | 20

ptrl o ptr2

COP 3223: C Programming (Pointers —Part 2) Page 13 © Dr. Mark J. LIewellyn

Pointer Arithmetic — Subtracting An Integer From A Pointer

« Let’s assume the following declarations have been
made:

int anArray[10], *ptrl, *ptr2, 1, 73;

* In general, subtracting an integer x from a pointer p
causes the pointer to reference the array element x
places before the one that p is initially referencing.

 More precisely, using the example declarations shown
above, If ptrl points to anArray[i], then ptrl—-
references anArray[i-7].

« NOTE: Itis a run-time error in the above expression if
the array element [i-j] does not exist (an out of
bounds error)!

”
COP 3223: C Programming (Pointers — Part 2) Page 14 © Dr. Mark J. LIewellyn g);

Pointer Arithmetic — Subtracting An Integer From A
Pointer —- EXAMPLE

ptrl = &anArray|[5];

ptrl .

ptr2 = ptrl - 3; 2 4 6 8 10 | 12 | 14 | 16 | 18 | 20
ptr2 o ptrl !

COP 3223: C Programming (Pointers —Part2) Page 15 © Dr. Mark J. LIewellyn

Pointer Arithmetic — Subtracting An Integer From A
Pointer —- EXAMPLE — continues from previous page

0 1 2 3 4 5 6 7 8 9

ptrl -= 5; 2 4 6 8 10 | 12 | 14 | 16 | 18 | 20

.

ptrl ptr2

0 1 2 3 4) 6 7 8 9

int i = -4; 2 4 6 8 10 | 12 | 14 | 16 | 18 | 20
ptr2 -= 1i; T T
ptrl . ptr2 .

(
COP 3223: C Programming (Pointers —Part2) Page 16 © Dr. Mark J. LIewellyn @j

Pointer Arithmetic — Subtracting One Pointer From Another

« Let’s assume the following declarations have been made:
int anArray[10], *ptrl, *ptr2, 1, 7;

* In general, subtracting one pointer from another, the result
IS the distance (measured in array elements) between the
pointers.

 Thus, If ptrl pointsto element anArray[i] and ptr2
points to anArray[j], then ptrl — ptr2 isequal to

1-7.
« NOTE: Itisarun-time error in the above expression if the

array element [i-3] does not exist (an out of bounds
error)!

« NOTE: Subtracting one pointer from another is undefined
unless both pointers reference the same array!

#
COP 3223: C Programming (Pointers —Part2) Page 17 © Dr. Mark J. LIewellyn @j

Pointer Arithmetic — Subtracting An Integer From A
Pointer —- EXAMPLE

ptrl = &anArray|[5];

ptr2 = &anArrayl[2]; 2 4 6 8 | 10 | 12 | 14 | 16 | 18 | 20
i = ptr2 - ptrl; //1i = 3 T T
i = ptrl - ptr2; //i =_-3

ptr2 . ptrl .

out of bounds error

ptrl = &anArray|[6];

ptr2 = &anArrayl[3];

i

i

= ptr2 - ptrl; //i = -3

—_>
—_>

= ptrl - ptr2; //1i = 3 ptr2 ptrl

COP 3223: C Programming (Pointers —Part2) Page 18 © Dr. Mark J. LIewellyn

Using Pointers For Array Processing

Pointer arithmetic iIs often used for moving about
In an array.

The following example illustrates how pointer
arithmetic iIs used to “walk through’ the elements
of an array producing the sum of the elements In
the array.

To keep things fairly simple, we’ll assume a
small array of 10 elements and use an initializer
to place the values In the array. The practice
problem at the end of these notes will have you
modify this example to use an array of user-
determined length to accomplish the same task.

’

COP 3223: C Programming (Pointers —Part 2) Page 19 © Dr. Mark J. Llewellyn g’)n

ﬂ array proceszsing uging pointer anthmetic. o

st K:\COP 3223 - Spring 2009\COP 3223 Program File...{ e/ £

3 //2pril 12, 2009 Fritten by: Mark Llewellyn
4 The sum of the elements in the array is: 55 ;|
5 #include <stdio.h>
6 #¥define MAX 10 Press any key to continue . . . M
? (| | '
8 int sumiirrayiint *ptrTolrray, int =size)
21
18 int local3um = 0; /J/sum of valuss in the array
11 int *localPtr; J/local pointer variable
12
13 localPtr = ptrTolArray: //set local pointer to first =lement in the array
14 while (localPtr < ptrIoArray + size) { //stop when local pointer reaches =nd of ar
15 localSum += *localPtr; //add teo running sum
16 localPtr++; //advance local polnter
17 Y//end wvhile stmt L
18 retaorn localSum; //return local sum |
19 }//end sumdrray function
20
21 int main()
22 {
23 int anfrrayv[MaX] = {1, 2, 3, 4, 5, &, 7, 8, 9, 10}:
24 int arraySum; //sum of elements in the array
25
26 Arraysum = sumhrraythnﬂrray, MEX) ;
27 printf ("The sum of the slements in the array is: Ed\n\n", arrayS5um);
28
29 gystem("PFATSE") ;
38 retorn 0; R |
31 }//end main function &]

COP 3223: C Programming (Pointers — Part 2) Page 20 © Dr. Mark J. Llewellyn

Trace of Array Example Using Pointer Arithmetic

In main() at time of
call to sumArray

-
N
w
1N
&
o
~
o)
©

10

>

anArray

Line 13 in sumArray

ptrToArray ——»

anArray L

localPtr ®

COP 3223: C Programming (Pointers —Part2) Page 21 © Dr. Mark J. Llewellyn

Trace of Array Example Using Pointer Arithmetic

Line 16 in sumArray
0 1 2 3 4) 6 7 8 9
1 2 3 4 5 6 7 8 9 10
ptrToArray ‘—_’T N
anArray .
localSum = 1, localPtr| e
Line 16 in sumArray
0 1 2 3 4) 6 7 8 9
1 2 3 4) 6 7 8 9 10
ptrToArray | © >
T A
anArray !

localSum = 3, localPtr| e

COP 3223: C Programming (Pointers —Part 2) Page 22 © Dr. Mark J. LIewellyn

Trace of Array Example Using Pointer Arithmetic

. Line 15 in sumArray

ptrToArray — > i

>

anArray

localSum = 55, localPtr| e

Line 16 in sumArray

Loop terminates

ptrToArray —1—>

>

anArray

localPtr d

localSum = 55,

COP 3223: C Programming (Pointers —Part 2) Page 23 © Dr. Mark J. LIewellyn

Using Pointers For Array Processing

As a final example of using pointer arithmetic for
array processing, the example on the next page
prints the elements In an array in the reverse
order in which they are stored.

Notice that In this case we are subtracting an
integer (1) from the value of a pointer, as well as
using various pointer assignments.

Once again, | just used an initializer for a fairly
simple array of values, but you might want to
modify the code so that the array values could be
either read In by the user from the keyboard or
even better from a file.

’

COP 3223: C Programming (Pointers — Part 2) Page 24 © Dr. Mark J. Llewellyn g’)n

reverse prnting an array wsing pointer arthrmetic. c

b #define MRX 10
7

B8 void reversePrinthrrayiint *ptrTolrray,
?{

1@ int *localPtr: //local pointer variable

i1

12 printf ("From the reversePrintArray functionhn"):

13 localPtr = ptrToArray + (size-1); //set local pointer to last element in array
14 while (localPtr »= ptrloifrray) { //stop when local pointer reaschses first =l=sm=nt 1.
15 printf("%4d4", *localPtrxr):

16 localPtr--; //advance local pointer

1?7 Y//end wvhile stmt

18 princf ("\n\n") ;

19 retorn:;

28 } //=nd reversePrintldrray function
21
22 int maini()

23 !

24 int andrray[Max] = {1, 2, 3, 4, &5, &,
25 int i; //loop control

26

27 printf("In main functionin™);

28 for (i = 0; i « MAX; i++){

29 printf("%4d4d", anfArravy[i]):
38 Y//end for stmt

31 printf (™\nhn™) ;

32 reversePFrintArray (anhrray, MAX):
33

34 printf ("\n\n") ;

arc et F TTITRTTOT NS W

int =ize)

o Sr gr

10%;

COP 3223: C Programming (Pointers — Part 2)

Page 25

© Dr. Mark J. Llewellyn

e+ KACOP 3223 - Spring 2009\COP 3223 Program ... !EH

In main function

i 2 3 4 5 6 7 8§ 918 —

From the reversePrintArray function
i 2 8 7 6 5 4 3 2 1

Press any key to continue . . . _
{ b

kN

COP 3223: C Programming (Pointers —Part2) Page 26 © Dr. Mark J. LIewellyn

Practice Problems

1. Modify the example on page 20 so that the
program asks the user how many elements will
be In the array and then reads that many values
from the keyboard entered by the user.

2. Write a C program that uses a function that
returns a pointer to the element of an array that
contains the largest value in the array. Have the
function accept an explicit pointer to the first
element of the array that Is passed to It.

’

COP 3223: C Programming (Pointers — Part 2) Page 27 © Dr. Mark J. Llewellyn g’)n

